Logging
Log Proxy input, output, and exceptions using:
- Lunary
- Langfuse
- OpenTelemetry
- GCS, s3, Azure (Blob) Buckets
- Custom Callbacks
- Langsmith
- DataDog
- DynamoDB
- etc.
Getting the LiteLLM Call ID
LiteLLM generates a unique call_id
for each request. This call_id
can be
used to track the request across the system. This can be very useful for finding
the info for a particular request in a logging system like one of the systems
mentioned in this page.
curl -i -sSL --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "what llm are you"}]
}' | grep 'x-litellm'
The output of this is:
x-litellm-call-id: b980db26-9512-45cc-b1da-c511a363b83f
x-litellm-model-id: cb41bc03f4c33d310019bae8c5afdb1af0a8f97b36a234405a9807614988457c
x-litellm-model-api-base: https://x-example-1234.openai.azure.com
x-litellm-version: 1.40.21
x-litellm-response-cost: 2.85e-05
x-litellm-key-tpm-limit: None
x-litellm-key-rpm-limit: None
A number of these headers could be useful for troubleshooting, but the
x-litellm-call-id
is the one that is most useful for tracking a request across
components in your system, including in logging tools.
Logging Features
Conditional Logging by Virtual Keys, Teams
Use this to:
- Conditionally enable logging for some virtual keys/teams
- Set different logging providers for different virtual keys/teams
👉 Get Started - Team/Key Based Logging
Redacting UserAPIKeyInfo
Redact information about the user api key (hashed token, user_id, team id, etc.), from logs.
Currently supported for Langfuse, OpenTelemetry, Logfire, ArizeAI logging.
litellm_settings:
callbacks: ["langfuse"]
redact_user_api_key_info: true
Redact Messages, Response Content
Set litellm.turn_off_message_logging=True
This will prevent the messages and responses from being logged to your logging provider, but request metadata will still be logged.
Example config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["langfuse"]
turn_off_message_logging: True # 👈 Key Change
If you have this feature turned on, you can override it for specific requests by
setting a request header LiteLLM-Disable-Message-Redaction: true
.
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'LiteLLM-Disable-Message-Redaction: true' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Removes any field with user_api_key_*
from metadata.
Turn off all tracking/logging
For some use cases, you may want to turn off all tracking/logging. You can do this by passing no-log=True
in the request body.
- Curl Request
- OpenAI
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer <litellm-api-key>' \
-d '{
"model": "openai/gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
}
]
}
],
"max_tokens": 300,
"no-log": true # 👈 Key Change
}'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"no-log": True # 👈 Key Change
}
)
print(response)
Expected Console Log
LiteLLM.Info: "no-log request, skipping logging"
What gets logged?
Found under kwargs["standard_logging_object"]
. This is a standard payload, logged for every response.
👉 Standard Logging Payload Specification
Lunary
Step1: Install dependencies and set your environment variables
Install the dependencies
pip install litellm lunary
Get you Lunary public key from from https://app.lunary.ai/settings
export LUNARY_PUBLIC_KEY="<your-public-key>"
Step 2: Create a config.yaml
and set lunary
callbacks
model_list:
- model_name: "*"
litellm_params:
model: "*"
litellm_settings:
success_callback: ["lunary"]
failure_callback: ["lunary"]
Step 3: Start the LiteLLM proxy
litellm --config config.yaml
Step 4: Make a request
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-d '{
"model": "gpt-4o",
"messages": [
{
"role": "system",
"content": "You are a helpful math tutor. Guide the user through the solution step by step."
},
{
"role": "user",
"content": "how can I solve 8x + 7 = -23"
}
]
}'
Langfuse
We will use the --config
to set litellm.success_callback = ["langfuse"]
this will log all successfull LLM calls to langfuse. Make sure to set LANGFUSE_PUBLIC_KEY
and LANGFUSE_SECRET_KEY
in your environment
Step 1 Install langfuse
pip install langfuse>=2.0.0
Step 2: Create a config.yaml
file and set litellm_settings
: success_callback
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["langfuse"]
Step 3: Set required env variables for logging to langfuse
export LANGFUSE_PUBLIC_KEY="pk_kk"
export LANGFUSE_SECRET_KEY="sk_ss"
# Optional, defaults to https://cloud.langfuse.com
export LANGFUSE_HOST="https://xxx.langfuse.com"
Step 4: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --debug
Test Request
litellm --test
Expected output on Langfuse
Logging Metadata to Langfuse
- Curl Request
- OpenAI v1.0.0+
- Langchain
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {
"generation_name": "ishaan-test-generation",
"generation_id": "gen-id22",
"trace_id": "trace-id22",
"trace_user_id": "user-id2"
}
}'
Set extra_body={"metadata": { }}
to metadata
you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"generation_name": "ishaan-generation-openai-client",
"generation_id": "openai-client-gen-id22",
"trace_id": "openai-client-trace-id22",
"trace_user_id": "openai-client-user-id2"
}
}
)
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"generation_name": "ishaan-generation-langchain-client",
"generation_id": "langchain-client-gen-id22",
"trace_id": "langchain-client-trace-id22",
"trace_user_id": "langchain-client-user-id2"
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
LiteLLM Tags - cache_hit
, cache_key
Use this if you want to control which LiteLLM-specific fields are logged as tags by the LiteLLM proxy. By default LiteLLM Proxy logs no LiteLLM-specific fields
LiteLLM specific field | Description | Example Value |
---|---|---|
cache_hit | Indicates whether a cache hit occured (True) or not (False) | true , false |
cache_key | The Cache key used for this request | d2b758c**** |
proxy_base_url | The base URL for the proxy server, the value of env var PROXY_BASE_URL on your server | https://proxy.example.com |
user_api_key_alias | An alias for the LiteLLM Virtual Key. | prod-app1 |
user_api_key_user_id | The unique ID associated with a user's API key. | user_123 , user_456 |
user_api_key_user_email | The email associated with a user's API key. | user@example.com , admin@example.com |
user_api_key_team_alias | An alias for a team associated with an API key. | team_alpha , dev_team |
Usage
Specify langfuse_default_tags
to control what litellm fields get logged on Langfuse
Example config.yaml
model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
success_callback: ["langfuse"]
# 👇 Key Change
langfuse_default_tags: ["cache_hit", "cache_key", "proxy_base_url", "user_api_key_alias", "user_api_key_user_id", "user_api_key_user_email", "user_api_key_team_alias", "semantic-similarity", "proxy_base_url"]
View POST sent from LiteLLM to provider
Use this when you want to view the RAW curl request sent from LiteLLM to the LLM API
- Curl Request
- OpenAI v1.0.0+
- Langchain
Pass metadata
as part of the request body
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {
"log_raw_request": true
}
}'
Set extra_body={"metadata": {"log_raw_request": True }}
to metadata
you want to pass
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"log_raw_request": True
}
}
)
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"log_raw_request": True
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Expected Output on Langfuse
You will see raw_request
in your Langfuse Metadata. This is the RAW CURL command sent from LiteLLM to your LLM API provider
OpenTelemetry
[Optional] Customize OTEL Service Name and OTEL TRACER NAME by setting the following variables in your environment
OTEL_TRACER_NAME=<your-trace-name> # default="litellm"
OTEL_SERVICE_NAME=<your-service-name>` # default="litellm"
- Log to console
- Log to Honeycomb
- Log to Traceloop Cloud
- Log to OTEL HTTP Collector
- Log to OTEL GRPC Collector
Step 1: Set callbacks and env vars
Add the following to your env
OTEL_EXPORTER="console"
Add otel
as a callback on your litellm_config.yaml
litellm_settings:
callbacks: ["otel"]
Step 2: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --detailed_debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Step 3: Expect to see the following logged on your server logs / console
This is the Span from OTEL Logging
{
"name": "litellm-acompletion",
"context": {
"trace_id": "0x8d354e2346060032703637a0843b20a3",
"span_id": "0xd8d3476a2eb12724",
"trace_state": "[]"
},
"kind": "SpanKind.INTERNAL",
"parent_id": null,
"start_time": "2024-06-04T19:46:56.415888Z",
"end_time": "2024-06-04T19:46:56.790278Z",
"status": {
"status_code": "OK"
},
"attributes": {
"model": "llama3-8b-8192"
},
"events": [],
"links": [],
"resource": {
"attributes": {
"service.name": "litellm"
},
"schema_url": ""
}
}
Quick Start - Log to Honeycomb
Step 1: Set callbacks and env vars
Add the following to your env
OTEL_EXPORTER="otlp_http"
OTEL_ENDPOINT="https://api.honeycomb.io/v1/traces"
OTEL_HEADERS="x-honeycomb-team=<your-api-key>"
Add otel
as a callback on your litellm_config.yaml
litellm_settings:
callbacks: ["otel"]
Step 2: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --detailed_debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Quick Start - Log to Traceloop
Step 1: Add the following to your env
OTEL_EXPORTER="otlp_http"
OTEL_ENDPOINT="https://api.traceloop.com"
OTEL_HEADERS="Authorization=Bearer%20<your-api-key>"
Step 2: Add otel
as a callbacks
litellm_settings:
callbacks: ["otel"]
Step 3: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --detailed_debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Quick Start - Log to OTEL Collector
Step 1: Set callbacks and env vars
Add the following to your env
OTEL_EXPORTER="otlp_http"
OTEL_ENDPOINT="http:/0.0.0.0:4317"
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
Add otel
as a callback on your litellm_config.yaml
litellm_settings:
callbacks: ["otel"]
Step 2: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --detailed_debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Quick Start - Log to OTEL GRPC Collector
Step 1: Set callbacks and env vars
Add the following to your env
OTEL_EXPORTER="otlp_grpc"
OTEL_ENDPOINT="http:/0.0.0.0:4317"
OTEL_HEADERS="x-honeycomb-team=<your-api-key>" # Optional
Add otel
as a callback on your litellm_config.yaml
litellm_settings:
callbacks: ["otel"]
Step 2: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --detailed_debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
🎉 Expect to see this trace logged in your OTEL collector
Redacting Messages, Response Content
Set message_logging=False
for otel
, no messages / response will be logged
litellm_settings:
callbacks: ["otel"]
## 👇 Key Change
callback_settings:
otel:
message_logging: False
Traceparent Header
Context propagation across Services Traceparent HTTP Header
❓ Use this when you want to pass information about the incoming request in a distributed tracing system
✅ Key change: Pass the traceparent
header in your requests. Read more about traceparent headers here
traceparent: 00-80e1afed08e019fc1110464cfa66635c-7a085853722dc6d2-01
Example Usage
- Make Request to LiteLLM Proxy with
traceparent
header
import openai
import uuid
client = openai.OpenAI(api_key="sk-1234", base_url="http://0.0.0.0:4000")
example_traceparent = f"00-80e1afed08e019fc1110464cfa66635c-02e80198930058d4-01"
extra_headers = {
"traceparent": example_traceparent
}
_trace_id = example_traceparent.split("-")[1]
print("EXTRA HEADERS: ", extra_headers)
print("Trace ID: ", _trace_id)
response = client.chat.completions.create(
model="llama3",
messages=[
{"role": "user", "content": "this is a test request, write a short poem"}
],
extra_headers=extra_headers,
)
print(response)
# EXTRA HEADERS: {'traceparent': '00-80e1afed08e019fc1110464cfa66635c-02e80198930058d4-01'}
# Trace ID: 80e1afed08e019fc1110464cfa66635c
- Lookup Trace ID on OTEL Logger
Search for Trace=80e1afed08e019fc1110464cfa66635c
on your OTEL Collector
Forwarding Traceparent HTTP Header
to LLM APIs
Use this if you want to forward the traceparent headers to your self hosted LLMs like vLLM
Set forward_traceparent_to_llm_provider: True
in your config.yaml
. This will forward the traceparent
header to your LLM API
Only use this for self hosted LLMs, this can cause Bedrock, VertexAI calls to fail
litellm_settings:
forward_traceparent_to_llm_provider: True
Google Cloud Storage Buckets
Log LLM Logs to Google Cloud Storage Buckets
✨ This is an Enterprise only feature Get Started with Enterprise here
Property | Details |
---|---|
Description | Log LLM Input/Output to cloud storage buckets |
Load Test Benchmarks | Benchmarks |
Google Docs on Cloud Storage | Google Cloud Storage |
Usage
- Add
gcs_bucket
to LiteLLM Config.yaml
model_list:
- litellm_params:
api_base: https://exampleopenaiendpoint-production.up.railway.app/
api_key: my-fake-key
model: openai/my-fake-model
model_name: fake-openai-endpoint
litellm_settings:
callbacks: ["gcs_bucket"] # 👈 KEY CHANGE # 👈 KEY CHANGE
- Set required env variables
GCS_BUCKET_NAME="<your-gcs-bucket-name>"
GCS_PATH_SERVICE_ACCOUNT="/Users/ishaanjaffer/Downloads/adroit-crow-413218-a956eef1a2a8.json" # Add path to service account.json
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
Expected Logs on GCS Buckets
Fields Logged on GCS Buckets
The standard logging object is logged on GCS Bucket
Getting service_account.json
from Google Cloud Console
- Go to Google Cloud Console
- Search for IAM & Admin
- Click on Service Accounts
- Select a Service Account
- Click on 'Keys' -> Add Key -> Create New Key -> JSON
- Save the JSON file and add the path to
GCS_PATH_SERVICE_ACCOUNT
s3 Buckets
We will use the --config
to set
litellm.success_callback = ["s3"]
This will log all successfull LLM calls to s3 Bucket
Step 1 Set AWS Credentials in .env
AWS_ACCESS_KEY_ID = ""
AWS_SECRET_ACCESS_KEY = ""
AWS_REGION_NAME = ""
Step 2: Create a config.yaml
file and set litellm_settings
: success_callback
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["s3"]
s3_callback_params:
s3_bucket_name: logs-bucket-litellm # AWS Bucket Name for S3
s3_region_name: us-west-2 # AWS Region Name for S3
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID # us os.environ/<variable name> to pass environment variables. This is AWS Access Key ID for S3
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY # AWS Secret Access Key for S3
s3_path: my-test-path # [OPTIONAL] set path in bucket you want to write logs to
s3_endpoint_url: https://s3.amazonaws.com # [OPTIONAL] S3 endpoint URL, if you want to use Backblaze/cloudflare s3 buckets
Step 3: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "Azure OpenAI GPT-4 East",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Your logs should be available on the specified s3 Bucket
Team Alias Prefix in Object Key
This is a preview feature
You can add the team alias to the object key by setting the team_alias
in the config.yaml
file. This will prefix the object key with the team alias.
litellm_settings:
callbacks: ["s3"]
enable_preview_features: true
s3_callback_params:
s3_bucket_name: logs-bucket-litellm
s3_region_name: us-west-2
s3_aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
s3_aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
s3_path: my-test-path
s3_endpoint_url: https://s3.amazonaws.com
s3_use_team_prefix: true
On s3 bucket, you will see the object key as my-test-path/my-team-alias/...
Azure Blob Storage
Log LLM Logs to Azure Data Lake Storage
✨ This is an Enterprise only feature Get Started with Enterprise here
Property | Details |
---|---|
Description | Log LLM Input/Output to Azure Blob Storag (Bucket) |
Azure Docs on Data Lake Storage | Azure Data Lake Storage |
Usage
- Add
azure_storage
to LiteLLM Config.yaml
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["azure_storage"] # 👈 KEY CHANGE # 👈 KEY CHANGE
- Set required env variables
# Required Environment Variables for Azure Storage
AZURE_STORAGE_ACCOUNT_NAME="litellm2" # The name of the Azure Storage Account to use for logging
AZURE_STORAGE_FILE_SYSTEM="litellm-logs" # The name of the Azure Storage File System to use for logging. (Typically the Container name)
# Authentication Variables
# Option 1: Use Storage Account Key
AZURE_STORAGE_ACCOUNT_KEY="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" # The Azure Storage Account Key to use for Authentication
# Option 2: Use Tenant ID + Client ID + Client Secret
AZURE_STORAGE_TENANT_ID="985efd7cxxxxxxxxxx" # The Application Tenant ID to use for Authentication
AZURE_STORAGE_CLIENT_ID="abe66585xxxxxxxxxx" # The Application Client ID to use for Authentication
AZURE_STORAGE_CLIENT_SECRET="uMS8Qxxxxxxxxxx" # The Application Client Secret to use for Authentication
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
Expected Logs on Azure Data Lake Storage
Fields Logged on Azure Data Lake Storage
The standard logging object is logged on Azure Data Lake Storage
DataDog
LiteLLM Supports logging to the following Datdog Integrations:
datadog
Datadog Logsdatadog_llm_observability
Datadog LLM Observabilityddtrace-run
Datadog Tracing
- Datadog Logs
- Datadog LLM Observability
We will use the --config
to set litellm.callbacks = ["datadog"]
this will log all successfull LLM calls to DataDog
Step 1: Create a config.yaml
file and set litellm_settings
: success_callback
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
callbacks: ["datadog"] # logs llm success + failure logs on datadog
service_callback: ["datadog"] # logs redis, postgres failures on datadog
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
callbacks: ["datadog_llm_observability"] # logs llm success logs on datadog
Step 2: Set Required env variables for datadog
DD_API_KEY="5f2d0f310***********" # your datadog API Key
DD_SITE="us5.datadoghq.com" # your datadog base url
DD_SOURCE="litellm_dev" # [OPTIONAL] your datadog source. use to differentiate dev vs. prod deployments
Step 3: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"metadata": {
"your-custom-metadata": "custom-field",
}
}'
Expected output on Datadog
Datadog Tracing
Use ddtrace-run
to enable Datadog Tracing on litellm proxy
Pass USE_DDTRACE=true
to the docker run command. When USE_DDTRACE=true
, the proxy will run ddtrace-run litellm
as the ENTRYPOINT
instead of just litellm
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-e USE_DDTRACE=true \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml --detailed_debug
Set DD variables (DD_SERVICE
etc)
LiteLLM supports customizing the following Datadog environment variables
Environment Variable | Description | Default Value | Required |
---|---|---|---|
DD_API_KEY | Your Datadog API key for authentication | None | ✅ Yes |
DD_SITE | Your Datadog site (e.g., "us5.datadoghq.com") | None | ✅ Yes |
DD_ENV | Environment tag for your logs (e.g., "production", "staging") | "unknown" | ❌ No |
DD_SERVICE | Service name for your logs | "litellm-server" | ❌ No |
DD_SOURCE | Source name for your logs | "litellm" | ❌ No |
DD_VERSION | Version tag for your logs | "unknown" | ❌ No |
HOSTNAME | Hostname tag for your logs | "" | ❌ No |
POD_NAME | Pod name tag (useful for Kubernetes deployments) | "unknown" | ❌ No |
Custom Callback Class [Async]
Use this when you want to run custom callbacks in python
Step 1 - Create your custom litellm
callback class
We use litellm.integrations.custom_logger
for this, more details about litellm custom callbacks here
Define your custom callback class in a python file.
Here's an example custom logger for tracking key, user, model, prompt, response, tokens, cost
. We create a file called custom_callbacks.py
and initialize proxy_handler_instance
from litellm.integrations.custom_logger import CustomLogger
import litellm
# This file includes the custom callbacks for LiteLLM Proxy
# Once defined, these can be passed in proxy_config.yaml
class MyCustomHandler(CustomLogger):
def log_pre_api_call(self, model, messages, kwargs):
print(f"Pre-API Call")
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print(f"Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print("On Success")
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success!")
# log: key, user, model, prompt, response, tokens, cost
# Access kwargs passed to litellm.completion()
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)
# Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
# Calculate cost using litellm.completion_cost()
cost = litellm.completion_cost(completion_response=response_obj)
response = response_obj
# tokens used in response
usage = response_obj["usage"]
print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Usage: {usage},
Cost: {cost},
Response: {response}
Proxy Metadata: {metadata}
"""
)
return
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
try:
print(f"On Async Failure !")
print("\nkwargs", kwargs)
# Access kwargs passed to litellm.completion()
model = kwargs.get("model", None)
messages = kwargs.get("messages", None)
user = kwargs.get("user", None)
# Access litellm_params passed to litellm.completion(), example access `metadata`
litellm_params = kwargs.get("litellm_params", {})
metadata = litellm_params.get("metadata", {}) # headers passed to LiteLLM proxy, can be found here
# Acess Exceptions & Traceback
exception_event = kwargs.get("exception", None)
traceback_event = kwargs.get("traceback_exception", None)
# Calculate cost using litellm.completion_cost()
cost = litellm.completion_cost(completion_response=response_obj)
print("now checking response obj")
print(
f"""
Model: {model},
Messages: {messages},
User: {user},
Cost: {cost},
Response: {response_obj}
Proxy Metadata: {metadata}
Exception: {exception_event}
Traceback: {traceback_event}
"""
)
except Exception as e:
print(f"Exception: {e}")
proxy_handler_instance = MyCustomHandler()
# Set litellm.callbacks = [proxy_handler_instance] on the proxy
# need to set litellm.callbacks = [proxy_handler_instance] # on the proxy
Step 2 - Pass your custom callback class in config.yaml
We pass the custom callback class defined in Step1 to the config.yaml.
Set callbacks
to python_filename.logger_instance_name
In the config below, we pass
- python_filename:
custom_callbacks.py
- logger_instance_name:
proxy_handler_instance
. This is defined in Step 1
callbacks: custom_callbacks.proxy_handler_instance
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
callbacks: custom_callbacks.proxy_handler_instance # sets litellm.callbacks = [proxy_handler_instance]
Step 3 - Start proxy + test request
litellm --config proxy_config.yaml
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "good morning good sir"
}
],
"user": "ishaan-app",
"temperature": 0.2
}'
Resulting Log on Proxy
On Success
Model: gpt-3.5-turbo,
Messages: [{'role': 'user', 'content': 'good morning good sir'}],
User: ishaan-app,
Usage: {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21},
Cost: 3.65e-05,
Response: {'id': 'chatcmpl-8S8avKJ1aVBg941y5xzGMSKrYCMvN', 'choices': [{'finish_reason': 'stop', 'index': 0, 'message': {'content': 'Good morning! How can I assist you today?', 'role': 'assistant'}}], 'created': 1701716913, 'model': 'gpt-3.5-turbo-0613', 'object': 'chat.completion', 'system_fingerprint': None, 'usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21}}
Proxy Metadata: {'user_api_key': None, 'headers': Headers({'host': '0.0.0.0:4000', 'user-agent': 'curl/7.88.1', 'accept': '*/*', 'authorization': 'Bearer sk-1234', 'content-length': '199', 'content-type': 'application/x-www-form-urlencoded'}), 'model_group': 'gpt-3.5-turbo', 'deployment': 'gpt-3.5-turbo-ModelID-gpt-3.5-turbo'}
Logging Proxy Request Object, Header, Url
Here's how you can access the url
, headers
, request body
sent to the proxy for each request
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success!")
litellm_params = kwargs.get("litellm_params", None)
proxy_server_request = litellm_params.get("proxy_server_request")
print(proxy_server_request)
Expected Output
{
"url": "http://testserver/chat/completions",
"method": "POST",
"headers": {
"host": "testserver",
"accept": "*/*",
"accept-encoding": "gzip, deflate",
"connection": "keep-alive",
"user-agent": "testclient",
"authorization": "Bearer None",
"content-length": "105",
"content-type": "application/json"
},
"body": {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{
"role": "user",
"content": "hi"
}
],
"max_tokens": 10
}
}
Logging model_info
set in config.yaml
Here is how to log the model_info
set in your proxy config.yaml
. Information on setting model_info
on config.yaml
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success!")
litellm_params = kwargs.get("litellm_params", None)
model_info = litellm_params.get("model_info")
print(model_info)
Expected Output
{'mode': 'embedding', 'input_cost_per_token': 0.002}
Logging responses from proxy
Both /chat/completions
and /embeddings
responses are available as response_obj
Note: for /chat/completions
, both stream=True
and non stream
responses are available as response_obj
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Success!")
print(response_obj)
Expected Output /chat/completion [for both stream
and non-stream
responses]
ModelResponse(
id='chatcmpl-8Tfu8GoMElwOZuj2JlHBhNHG01PPo',
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content='As an AI language model, I do not have a physical body and therefore do not possess any degree or educational qualifications. My knowledge and abilities come from the programming and algorithms that have been developed by my creators.',
role='assistant'
)
)
],
created=1702083284,
model='chatgpt-v-2',
object='chat.completion',
system_fingerprint=None,
usage=Usage(
completion_tokens=42,
prompt_tokens=5,
total_tokens=47
)
)
Expected Output /embeddings
{
'model': 'ada',
'data': [
{
'embedding': [
-0.035126980394124985, -0.020624293014407158, -0.015343423001468182,
-0.03980357199907303, -0.02750781551003456, 0.02111034281551838,
-0.022069307044148445, -0.019442008808255196, -0.00955679826438427,
-0.013143060728907585, 0.029583381488919258, -0.004725852981209755,
-0.015198921784758568, -0.014069183729588985, 0.00897879246622324,
0.01521205808967352,
# ... (truncated for brevity)
]
}
]
}
Custom Callback APIs [Async]
This is an Enterprise only feature Get Started with Enterprise here
Use this if you:
- Want to use custom callbacks written in a non Python programming language
- Want your callbacks to run on a different microservice
Step 1. Create your generic logging API endpoint
Set up a generic API endpoint that can receive data in JSON format. The data will be included within a "data" field.
Your server should support the following Request format:
curl --location https://your-domain.com/log-event \
--request POST \
--header "Content-Type: application/json" \
--data '{
"data": {
"id": "chatcmpl-8sgE89cEQ4q9biRtxMvDfQU1O82PT",
"call_type": "acompletion",
"cache_hit": "None",
"startTime": "2024-02-15 16:18:44.336280",
"endTime": "2024-02-15 16:18:45.045539",
"model": "gpt-3.5-turbo",
"user": "ishaan-2",
"modelParameters": "{'temperature': 0.7, 'max_tokens': 10, 'user': 'ishaan-2', 'extra_body': {}}",
"messages": "[{'role': 'user', 'content': 'This is a test'}]",
"response": "ModelResponse(id='chatcmpl-8sgE89cEQ4q9biRtxMvDfQU1O82PT', choices=[Choices(finish_reason='length', index=0, message=Message(content='Great! How can I assist you with this test', role='assistant'))], created=1708042724, model='gpt-3.5-turbo-0613', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=10, prompt_tokens=11, total_tokens=21))",
"usage": "Usage(completion_tokens=10, prompt_tokens=11, total_tokens=21)",
"metadata": "{}",
"cost": "3.65e-05"
}
}'
Reference FastAPI Python Server
Here's a reference FastAPI Server that is compatible with LiteLLM Proxy:
# this is an example endpoint to receive data from litellm
from fastapi import FastAPI, HTTPException, Request
app = FastAPI()
@app.post("/log-event")
async def log_event(request: Request):
try:
print("Received /log-event request")
# Assuming the incoming request has JSON data
data = await request.json()
print("Received request data:")
print(data)
# Your additional logic can go here
# For now, just printing the received data
return {"message": "Request received successfully"}
except Exception as e:
print(f"Error processing request: {str(e)}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail="Internal Server Error")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=4000)
Step 2. Set your GENERIC_LOGGER_ENDPOINT
to the endpoint + route we should send callback logs to
os.environ["GENERIC_LOGGER_ENDPOINT"] = "http://localhost:4000/log-event"
Step 3. Create a config.yaml
file and set litellm_settings
: success_callback
= ["generic"]
Example litellm proxy config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["generic"]
Start the LiteLLM Proxy and make a test request to verify the logs reached your callback API
Langsmith
- Set
success_callback: ["langsmith"]
on litellm config.yaml
If you're using a custom LangSmith instance, you can set the
LANGSMITH_BASE_URL
environment variable to point to your instance.
litellm_settings:
success_callback: ["langsmith"]
environment_variables:
LANGSMITH_API_KEY: "lsv2_pt_xxxxxxxx"
LANGSMITH_PROJECT: "litellm-proxy"
LANGSMITH_BASE_URL: "https://api.smith.langchain.com" # (Optional - only needed if you have a custom Langsmith instance)
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "Hello, Claude gm!"
}
],
}
'
Expect to see your log on Langfuse
Arize AI
- Set
success_callback: ["arize"]
on litellm config.yaml
model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["arize"]
environment_variables:
ARIZE_SPACE_KEY: "d0*****"
ARIZE_API_KEY: "141a****"
ARIZE_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize GRPC api endpoint
ARIZE_HTTP_ENDPOINT: "https://otlp.arize.com/v1" # OPTIONAL - your custom arize HTTP api endpoint. Set either this or ARIZE_ENDPOINT
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "Hello, Claude gm!"
}
],
}
'
Expect to see your log on Langfuse
Langtrace
- Set
success_callback: ["langtrace"]
on litellm config.yaml
model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
litellm_settings:
callbacks: ["langtrace"]
environment_variables:
LANGTRACE_API_KEY: "141a****"
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "Hello, Claude gm!"
}
],
}
'
Galileo
[BETA]
Log LLM I/O on www.rungalileo.io
Beta Integration
Required Env Variables
export GALILEO_BASE_URL="" # For most users, this is the same as their console URL except with the word 'console' replaced by 'api' (e.g. http://www.console.galileo.myenterprise.com -> http://www.api.galileo.myenterprise.com)
export GALILEO_PROJECT_ID=""
export GALILEO_USERNAME=""
export GALILEO_PASSWORD=""
Quick Start
- Add to Config.yaml
model_list:
- litellm_params:
api_base: https://exampleopenaiendpoint-production.up.railway.app/
api_key: my-fake-key
model: openai/my-fake-model
model_name: fake-openai-endpoint
litellm_settings:
success_callback: ["galileo"] # 👈 KEY CHANGE
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
🎉 That's it - Expect to see your Logs on your Galileo Dashboard
OpenMeter
Bill customers according to their LLM API usage with OpenMeter
Required Env Variables
# from https://openmeter.cloud
export OPENMETER_API_ENDPOINT="" # defaults to https://openmeter.cloud
export OPENMETER_API_KEY=""
Quick Start
- Add to Config.yaml
model_list:
- litellm_params:
api_base: https://openai-function-calling-workers.tasslexyz.workers.dev/
api_key: my-fake-key
model: openai/my-fake-model
model_name: fake-openai-endpoint
litellm_settings:
success_callback: ["openmeter"] # 👈 KEY CHANGE
- Start Proxy
litellm --config /path/to/config.yaml
- Test it!
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fake-openai-endpoint",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}
'
DynamoDB
We will use the --config
to set
litellm.success_callback = ["dynamodb"]
litellm.dynamodb_table_name = "your-table-name"
This will log all successfull LLM calls to DynamoDB
Step 1 Set AWS Credentials in .env
AWS_ACCESS_KEY_ID = ""
AWS_SECRET_ACCESS_KEY = ""
AWS_REGION_NAME = ""
Step 2: Create a config.yaml
file and set litellm_settings
: success_callback
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["dynamodb"]
dynamodb_table_name: your-table-name
Step 3: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "Azure OpenAI GPT-4 East",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}'
Your logs should be available on DynamoDB
Data Logged to DynamoDB /chat/completions
{
"id": {
"S": "chatcmpl-8W15J4480a3fAQ1yQaMgtsKJAicen"
},
"call_type": {
"S": "acompletion"
},
"endTime": {
"S": "2023-12-15 17:25:58.424118"
},
"messages": {
"S": "[{'role': 'user', 'content': 'This is a test'}]"
},
"metadata": {
"S": "{}"
},
"model": {
"S": "gpt-3.5-turbo"
},
"modelParameters": {
"S": "{'temperature': 0.7, 'max_tokens': 100, 'user': 'ishaan-2'}"
},
"response": {
"S": "ModelResponse(id='chatcmpl-8W15J4480a3fAQ1yQaMgtsKJAicen', choices=[Choices(finish_reason='stop', index=0, message=Message(content='Great! What can I assist you with?', role='assistant'))], created=1702641357, model='gpt-3.5-turbo-0613', object='chat.completion', system_fingerprint=None, usage=Usage(completion_tokens=9, prompt_tokens=11, total_tokens=20))"
},
"startTime": {
"S": "2023-12-15 17:25:56.047035"
},
"usage": {
"S": "Usage(completion_tokens=9, prompt_tokens=11, total_tokens=20)"
},
"user": {
"S": "ishaan-2"
}
}
Data logged to DynamoDB /embeddings
{
"id": {
"S": "4dec8d4d-4817-472d-9fc6-c7a6153eb2ca"
},
"call_type": {
"S": "aembedding"
},
"endTime": {
"S": "2023-12-15 17:25:59.890261"
},
"messages": {
"S": "['hi']"
},
"metadata": {
"S": "{}"
},
"model": {
"S": "text-embedding-ada-002"
},
"modelParameters": {
"S": "{'user': 'ishaan-2'}"
},
"response": {
"S": "EmbeddingResponse(model='text-embedding-ada-002-v2', data=[{'embedding': [-0.03503197431564331, -0.020601635798811913, -0.015375726856291294,
}
}
Sentry
If api calls fail (llm/database) you can log those to Sentry:
Step 1 Install Sentry
pip install --upgrade sentry-sdk
Step 2: Save your Sentry_DSN and add litellm_settings
: failure_callback
export SENTRY_DSN="your-sentry-dsn"
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
# other settings
failure_callback: ["sentry"]
general_settings:
database_url: "my-bad-url" # set a fake url to trigger a sentry exception
Step 3: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --debug
Test Request
litellm --test
Athina
Athina allows you to log LLM Input/Output for monitoring, analytics, and observability.
We will use the --config
to set litellm.success_callback = ["athina"]
this will log all successfull LLM calls to athina
Step 1 Set Athina API key
ATHINA_API_KEY = "your-athina-api-key"
Step 2: Create a config.yaml
file and set litellm_settings
: success_callback
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: gpt-3.5-turbo
litellm_settings:
success_callback: ["athina"]
Step 3: Start the proxy, make a test request
Start proxy
litellm --config config.yaml --debug
Test Request
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "which llm are you"
}
]
}'